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Abstract-We generalize Bueckner's fundamental field concept and develop higher order weight
functions for calculating power e)tpansion coefficients of a regular elastic field in a two-dimensional
body in the absence of body forces. Problems of the first and third kind are investigated. Integral
formulas for the e)tpansion coellicients arc given for interior points and crack tips. In these formulas
the integration is performed over the boundary of the body. crack fa\.'es included. The prescrilx:d
boundary data (tractions and/or displacements) of the regular field appear in the integrand in
weighted form. The weights arc derived from fundamentill fields of universal character. The sig
nificance of these e)tpansion c{lCllicients in fracture analysis is illso discussed.

I. INTRODUCTION

The weight function theory was introduced by Rueckner (1970. 1973) for determining stress
intensity factors in a linear elastic cmcked body. The weight functions arc universal functions
for the given crack geometry .lOd the stress intensity factors under any applied loading can
be calculated by using the weight functions through quadmture. Bueckner's theory is based
on the concept of a fundamental field (sec subsequent discussion) and Betti's theorem of
rt.:ciprocity. A dil1'crent interpretation of Rueckner's weight functions was given by Rice
(1972) through the notion of energetic forces and crack front motion.

Subse4uent studies of the weight functions were c'lrried out by Bueckner (1975), Paris
e( al. (1976). Labbcns e( al. (1976b). Wu and Carlsson (1983), Bortman and Banks-Sills
(1983). Kirchner (1986), and Kirchner and Michot (1986). among others. Recent advances
of the theory in three-dimensions have been given by Rice (1985a. I985b) and Bueckner
(1977. 1987). and some applications of the three-dimensional theory can be found in the
works of Labbens e( al. (1976a). Sham and Zhou (1989). and Gao and Rice (1986. 1987).

In a regular field of plane deformation without body forces. the complex stress intensity
factor at the tip ofa traction free crack determines the most significant expansion coefficients
of M uskhclishvili's analytic field functions. Since the work of Irwin (1957). there has been
a growing interest in the higher order expansion coefficients associated with cracks and
their stability. The next term in the power series expansion also plays an important role in
fracture amtlyses. This term corresponds to a uniform normal stress acting parallel to the
faces of a Mode J traction free crack and it is often referred to as the elastic T-term. Larsson
and Carlsson (1973) and Rice (1974) have shown that the inclusion of the elastic T-term
in the small-scale yielding procedure of clastic-plastic fracture can increase the range of
load levels over which such a procedure gives accurate results. Recent work by Bilby e( al.
(1986) has also indicated that the inclusion of T extends the range of validity of the small
scale yielding conditions at finite strains. As demonstrated by Cotterell and Rice (1980).
another significance of T in fracture analysis is that it governs the stability of a straight
crack p,llh under Mode J loading conditions. Because of these features. the clastic T-term
serves as a biaxial parameter and it is often used together with the stress intensity factor to
characterize fracture (Larsson and Carlsson. 1973; Rice. 1974; Leevers and Radon. 1982).

The succeeding higher order coefficients in the power series expansion are also of great
importance in certain experimental techniques for measuring stress intensity factors. These
techniques include: photoelasticity (Theocaris and Gdoutos. 1975; Etheridge and Dally,
1978; Sanford et al.• 1981; Chona et al.. 1983; Barker et al.• 1985); strain-gage method
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(Dally and Sanford. 1987) ; reflected caustics in optically isotropic materials (Theocaris and
Ioakimidis. 1979); and optically anisotropic materials (Phillips and Sanford. 1981). The
inclusion of the higher order coefficients permits a more accurate interpretation of fracture
data obtained at finite distances from the crack tip. For example. Etheridge and Dally
( 1978) used two additional coefficients. Phillips and Sanford (1981) used four. and Dally
and Sanford (1987) used three. in the analysis of the experimental data.

The expansion coefficients for interior points are also of great importance in stress
analysis. For example. the coefficient of the term linear in : can be related to the force on
a discrete screw dislocation in an elastic body (Sham. 1988c).

In this work we are concerned with the calculation of such coetlicients at interior points
as well as at crack tips. To this end Bueckner"s (1970) fundamental fields are generalized.
As in his theory. the reciprocity theorem is applied to the regular field. the expansion
coefficients of which we wish to determine. and to an appropriate fundamental field. This
procedure leads to integral representations of the coetlicients. The integral extends over the
boundary of the elastic body; the prescribed boundary data (tractions and/or dis
placements) of the regular field appear in the integrand. multiplied in work-like m.mner by
the energy-conjugate data of the fundamental field as weight function.

The synopsis of this paper is as follows. Preliminaries arc introduced in Section 2.
including some general results to be used subsequently. In Section 3. Bueckner's (1970.
1973) fundamental lield concept and elastic reciprocity an: used to develop integration
formulas for determining these expansion I.:oellicients at interior points and crack tips
through the higher ordcr weight funl.:tions. Modilil.:ations to thc integration formulas for
prohlems involving hoth tral.:tion and displacemcnt boundaries arc given in Scction 4. The
wnstrudion of fundamcntal fields for c1osed-cral.:k gcometry is discussed in Sel.:tion 5. In
Section 6, generalization of the results to infinite domains is given. Integration formulas
arc also applied to evaluate the expansion codlicients of a semi-infinite I.:rack in an infinite
body under certain special loading wnditions. These specific applications arc chosen because
results for the fundamental fields .Ind the stress-'1I1alysis problems can be obtained in closed
form. and thus allowing a demonstration of the soundness of the theory. Further extension
of the theory to include body forces in the elastic field is also discussed in Section 6.

Recently. Sham and Bueckner (19!i8) have employed the concepts of the fundamental
fidd and elastic reciprocity to develop weight functions for determining the notch-interface
stress intensity factor in a piecewise homogeneous, isotropic body deforming in anti plane
strain. The theory introduced in this paper can be generalized to determine higher order
expansion coefllcients for notch tips. By using Rice's energetic approach, Parks (1979) has
given a procedure to calculate the stress concentration factor by means of weight functions.
It can bc noted that the present theory can also be cxtended to determine expansion
coefllcients at smooth boundary locations.

2. PRELlMI!'ir\RIES

Consider an eI'lstic body under plane deformations. Lct x, y be the Cartesian coor
dinates and: == x + iy be a complex variable with i being the imaginary unit. Then in the
absence or body forces any elastic field in the body may be expressed in terms of two
analytic functions or:, e/J(:) and t/J(:) (M uskhelishvili. 1977). However. it is more convenient
to express the clastic state by the analytic functions rp and 1', where I' == '" + :ep'. The
displacements. u and t', :lIld the in-plane stresses arc then given by

with

2jl\l' == 2jl(U + ic) = Kr/J(:) - p(=) + (= -:) 41)'(=)

ern = Re [rp'(:)+2ep'(':)-/(:) + (=-:)r/J"(=)j

(Til = Rc [ep'(:) + i?<:-> - (= -:) (~"r:--) I
er" = -1m [ep'(:)-p'(:)+(:-:)rp"(:)]

(I a)

(I b)

(I c)

( Id)



The theory of higher order weight functions for linc=ar elastic plane problems

I( = 3- 4~' (plane strain)

3-~'
I( =-- (generalized plane stress)

I +~.
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where J.l is the shear modulus and v Poisson's ratio.
The preceding representation is not without ambiguity. Necessary and sufficient to

yield a field of vanishing stresses are functions e/J(:). p(:) of the form

e/J(:) = a+ic:. p(:) = b+ic: ( Ie)

with arbitrary complex coefficients a. b and an arbitrary real coefficient c. The associated
displacement is a rigid body motion given by

2JlII' = I(a-D+i(K+ l)c:, (I f)

The components of the traction vector attacking the material to the left of an oriented
arc clement ds in the x- and y-dircctions are X and Y respectively .md they are given by

where

Z ds == (X + i Y) ds = - i d P

p = P(:) = tp(:)+p<:)+(:-:)¢'(:);

(2a)

(2b)

P(:) is not an analytic function in general. Also. if N == n,+in. where n, and "., .tre the
Cartesian components of the unit normal pointing to the right of the oriented arc dement
ds

d: 'N d.: , -- = I ~- = -INds . . ds

and we may express the tractions as

Z = N[¢'+tp']+N[(})'-p'+(':-:)¢"J.

Using eqn (2b). the displacments may be written in the form

2/111' = (I + I()tP - P.

(2c)

(3)

The resultant force and the resultant moment about the origin, produced by the tractions
acting on an oriented curve n. arc respectively

(4)

Let ¢. p be regular along n; this makes P continuous on n. Let n be either closed
or, if open, such that P takes the same value at its end points. [n this case integral (4) I

vanishes. i.e. the tractions acting on n have zero force resultant. As for the moment,
integration by parts is used and it is found quite generally
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Fig, I, Finite plane clastic hlldy R wilh hllundin~ surface (IN, r is a 'IIlall Clrde centered at an
inlerillr pllint. : ~. O. and rt '= .'N u r hounds;1 suh-dlllllain (If R.

M = - Re r:dP = Re r /' d: - Re 1':1:' = Re rPd.: - Re 1':1:-
J" Jlr "J" ..

= Re r [cP+p+(:-.:)e/J'! d.:-Re I':J.:'
J" :

= Re r [ep d.: - ep d: + (ep +p) d.:1 +Re [(: - .:)e/J - 1'=11:'J" .

= Re r [tP+I'] d.:+Rc [(:-.:)tP-P=I]:-
J" :. (5)

where another integration by parts was used to convert the integral with 4)' : and C (" arc
the end points of n.

Consider two clastic states distinguished by the subscripts I, 2 for the plane body R
shown in Fig. I. Let r be an oriented, piecewise smooth curw in R, going from a point ('
to another point (". Along r, the work done by the tractions of state) on the displacements
of state k is given by

H/)dr ) =1(X)Uk+ Y)I'd d.I' = Re1(X+iY),(u-il')k ds

= -Re illi"k dP j = 1m lli"k dP j : },k = 1.2.

Consider the difference in works

which, by (3), may be written as

(6)

(7a)
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Obviously

Furthermore

by integration by parts. More eKplicitly

,ml[Pzd¢.-P , d¢zl = ,ml[p, dcPz-P: dc/1ll

= ,ml[CP, dcp:-cp: dCP,+P, dcpz-pz dcp,+(:-:)(c/1'. dcpz-cp': dc/1dl.

Ilcrc

also

hence

Putting all pieces together one obtains

An equivalent representation is obtained from

This leads to
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I + I( 1 J"W*(L) = - -.,- 1m (pz d4>1 +4>: dpd+lm G
-~ - ;

1+1(
== -II'! Pz+ -.,- [PI - (4)1 +PI)]~Z

-~

1+11: --
== -II'! Pz+ -.,- (:-=>4>'!4>z.

-~

(8)

(9)

The preceding formulas can be extended towards a union of oriented arcs.
Before we proceed to develop the weight function theory. we first distinguish two kinds

of elastic fields; namely. regular fields and singular fields. Regular fields are fields of
displacements. strains and stresses which produce finite elastic energy of deformation in
any sub-domain of the body. Continuously imposed displacements and/or tractions along
the bound'lry yield regular fields in particular. We permit the strains and stresses of a
regular field to be unbounded at certain boundary points. and an example is the elastic K
field for cracked solids. Singular fields are elastic fields which generate infinite elastic energy
of deform'ltion in the neighborhood of a special (singular) point. Examples of these fields
are solutions to clastic boundary value problems of point forces and dipoles and fun
d'lmental fields in notched and cracked bodies (Bueckner, 1970; Rice. 1972; Sham and
Bueckner, 1988).

3. PR08LEMS OF THE FIRST KIND

3.1. Interior points
Consider a body R of finite size loaded by prescribed tractions on DR where DR is the

boundary of R (Fig. I). It is assumed that there arc no body forces. The elastic field in R
is assumed to be regular. In the neighborhood of any interior point. say the origin. : == 0
in R, the field functions cP. p have expansions

~ .(,

(jJ(:) == La.::", p(:) == Lb.::", a., b. == complex coefficients. (10)
n-O n-O

Here it can be assumed a o == 0, bo == O. This is no essential loss of generality since it effects
rigid body motion only.

Next. consider a singular field

,I.' ( ) 2Jt A -m'I'm = == -I-- m= •+1(
( II)

where m is a positive integer and Am and Bm arc some complex coefficients. Since l/J:" and
P:" and their derivatives arc continuous everywhere in R except at : == O. they yield a
continuous P and thus a zero force resultant on any piecewise smooth contour in R which
does not pass the origin. Due to (5) the corresponding resultant moment is also zero exept
when the contour encircles the origin and m == I. For m == I. the resultant moment is
[( - 41t~)/(1+ 11:)] 1m (A I + B I) if the contour is traversed in an anti-clockwise direction
around === O. The elastic field (II) gives rise to surface tractions on oR. These surface
tractions will be relieved by a complementary regular field, l/J;" and P;". to obtain
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where the elastic state characterized by 4J~ and p~ will be referred to as a fundamental field
of order m. The fundamental field so constructed has no body forces and it induces zero
tractions on cR. It is clear that the regular field 4J~, p~ does not exist for m = I in general.
In this case we restrict (II) by

( 13)

in order to ascertain (12).
The two elastic states considered in the previous section are chosen as follows. The

elastic state 4J I and P I is the regular field with expansions (10) near == O. The second elastic
state is the fundamental field; namely 4J~ = 4J~ and P~ = p~. Let n be a boundary which
consists of oR and r (Fig. I). Here r is a small circle of radius y centered at the origin. n
bounds a sub-domain of R in which the two states are regular. The reciprocity theorem
applies and one may write

W*(n) = W*(DR)+ W*(r) = o. (14)

Since the first term of eqn (14) is independent of " so must be the second tcrm W*(r). Now
dP z vanishes on (JR; thus, using (7a), one obtains for the first term

Near the origin. (Pl ~ (p;~ and Pl ~ P,~" With the aid of (8). one can express W*(r) as

1+,.; iW*(r) = --,1m (P:" dIp, +cp:" dpd+O(y).
_It r

(15)

( 16)

The boundary term of (8) does not contribute because r is a closed path and function G is
continuous on r. The term O(y) stands for and represents the order of the contribution of
4J~, p;". (Actually that contribution vanishes.) One now substitutes eqns (10) and (II) into
eqn (16) to obtain

W*(r) = -1m f r(Bman+Amhn)n=,,-m-1 d=+O(y)
n-I Jr

=2nm Re [Bmam+ Ambml + O(y). ( 17)

In the limit y ..... 0 one obtains the following formula for determining the coefficients am and
bm :

Re (Bmom+Amhm ) = - ~ 1m r ~i'z dP •.
_nm ).,11

(18)

Generally, four fundamental fields are needed in order to determine the two complex
coefficients am and hmo These fundamental fields are obtained by choosing the coefficients
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Tablt: I. The: value:s of Am. B~ to be sc:t in (II) for
obtaining the appropriate fumlame:ntal fidd which dete:r
mim:s the coefficie:nts of e::tpansions. 11m • hm • of the elastic

fidd at inh:rior points

CoefficIent to be dete:rmine:d Am Bm

Rel1m 0
Iml1~ 0 -I

Re hm ( 0
Imhm -I 0

Am and 8 m in eqns (II) and (12) as in Table I. It should be kept in mind that the
complementary regular fields c/>;". p;" depend on the choice of Am and 8m.

For m = I. A I and 8 1 are not arbitrary but are restricted by (13). One can determine
Re a I and Re b, by choosing the pair (A ,. 8 I) to be respectively (0. I) and (I. 0) as before.
But one can only determine the combination 1m (a, - b,). by setting (A 1.8'> = (i. - i).
However. for a pure traction boundary value problem. more information on a,. b l is of no
interest since its effect shows up in a rigid body rotation only. (fwe denote the displacements
of the fundamental fields of order m by u~. 1';". then (18) may be rewritten as

(19)

In analogy to the weight functions introduced by Bueckner (1970. 1973) for determining
stress intensity factors in cracked bodies. the displaclltents II,;, .tnd l'~ arc referred to as
weight functions of order f1/ for the interior point == O. It is noted that for problems of the
first kind. the weight funl:tions arc unillUC up to an arbitrary rigid body motion.

3.2. Crack lips
3.2.1. RI!9111ar jidds (///(1 jil1/(laml!lIIt11 jidds. We now turn to the consideration of

cxpansion coellkients at crack tips. Consider an open crack in a finite body loaded by
continuously imposed tractions on the external boundary DR (Fig. 2). We shall employ

y

r

I.

JC

R

Fig. 2. An open erack in a finitc body R with a bounding surface consisting of rJR and C •• 'C_
(upper and lowcr crack faces). Crack facc 10ildings of the induced type arc admilled in thc interval
(- L. 0). C. and C'_ are the portions of C. and C _ outside r. n is oR u C. u r u C'_ bounds a

sub-domain of R.
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both Cartesian (x•.") and polar (r. 9) coordinates with the origins being placed at the crack
tip. It is assumed that there are no body forces present in the body. We admit loadings on
some portions of the crack faces. C+ and C_. However. we restrict the crack face loadings
to be of the induced type and this means that the traction vectors at two opposing points
on the crack faces are equal and opposite to one another. Near the crack tip. we consider
a continuous crack face loading in the interval ( - L. 0]. and we shall represent this crack
face loading by a convergent series for the said interval as

>::

U,.• + iu,. = I(x) = L fl<'~' - L < x ~ O. on C+' c_
1<-0

(20)

where.h is complex in general. A theorem given by Bueckner (1973) states that if the elastic
field has finite energy in the neighborhood of the crack tip. and if ¢' and p' are continuous
in the neighborhood of the crack tip (excluding == 0), then the functions ¢ and p admit
expansions

"J '7C

¢(=) = L an="!~. p(=) = L lin=" ~
n- I n-::l! I

for 1=1 < 1.. In particular

fl fl •
"n = tin for fl = odd. 2 lin = /;n ~)!~ - ., tin lor fl = even.

It has been assumed that the origin remains fix.ed.
Consider the following singular tiekl for the cral.:ked body:

(2Ia)

(21 b)

, 2" _ ,
,,.' = (- I)'" ~ -'-... A - "'/-

on I +K ,.,- (22)

where m = positive integer. A,., = complex coetJicient. For this field P = 0 on the negative
x-axis; it therefore gives zero tractions on the crack faces but the tractions are non-zero on
any oriented, piecewise smooth curve. P, originating from a point" on the lower crack
face to any point , .. on the upper crack face. However, these tractions lead to a zero resultant
force on P and this follows directly from (4),. The resultant moment. M. produced by
these tractions is. from (5).

M = Re f lP:.. +¢:.,] d=.Jr.

Now let , .. =C We find that the integml is zero for even m. m #' 2 and it is purely imaginary
for odd m. Thus M is zero for all singular fields ¢:.. and IJ:" except m = 2. For m = 2, we
obtain M = [( - 81Cj.l)/( 1+ K)] 1m A 2'

The tractions of the singular field (22) on the external boundary oR are non-zero in
general. Since we can choose r· to be oR. the tractions on DR are self-equilibrated for
m =F 2. We shall remove these surface tractions in the customary manner by a comple
mentary regul'lr field. ¢'", and p'",. This regular field can be represented by

'n ,..,

¢'", = L B
J
=II2. p'", = L (-1)1+ I Bj =JI2; Bj = complex coefficient (23)

j- I j- I

near the crack tip. Of course. such a field leaves the crack faces traction free. The resulting
field
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(24)

is referred to as a fundamental field of order m for the crack tip. The fundamental field has
no body forces. It exists for all values of m except m = 2 where in this case we must insist
on

1m A: = 0 (25)

in order to ascertain the existence of the complementary regular field for m = 2. Altogether
the fundamental field has no body forces and shows zero tractions on C ~. C _ and cR.
Using (3). we find that the displacements of the fundamental field have the asymptotic form

(26)

3.2.2. Elastic reciprocity. We shall now analyze at ;: = 0 the regular field characterized
by (20). (21 a). (21 b). The functions (p. p of that field will be referred to as c/J l' P I respectively.
Let c/J:. P: describe a fundamental field of order m. as given by (24).

Consider an oriented closed path Q (Fig. 2). which consists of ('R. of crack segments
C •. C and of a circle r with radius }' < L and also sufficiently small such that the interior
of the path is a sub-domain of R. We shall refer to the union of C ~. C _ collectively as C;
and similarly. C denotes the crack segments C ... C_. In this sub-domain fields I and 2 are
regular; the reciprocity theorem. applied to the two fields. yields W*(Q) = 0 or. in more
detail.

(27)

It will be convenient to set

for certain paths Q' ; here the subscript .\' refers to the singular field c/J;". p;" and to field I.
while the subscript r pertains to the regular complementary field tP'"" p'", and to field I.

Turning now to W*(f) we have W*(f) = W:(f) + W,*(f); evidently W,*(f) = O(y).
Due to (8) we lind

(28)

but the associated G. vanishes at the ends of r since P2 =O. The expressions (21 a) and (22)
permit us to write

L

wJ*(r) = -1m L Dm"l. -m with
,,-I

" I -Dm" = 2[(-1)"'· A",a.+A",h.l and

J k = L=lk - 2)/2 d=.

We observe that J o = -27ti and that

lk = 0 for k #: 0 and even.

For odd k we find

(29a)

(29b)

(29c)

(30)
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4i ..k' . [krrJlie = - Ii r '. SID "2 .

Using (2Ib) we may rewrite D",". We obtain in particular

367

(31)

(32)

Also

m _
Dmm = "2 [Ama", + A",um] for ", = odd.

From here on we pursue the cuses of even and odd m separutely.

3.2.3. Fllnelamenwl.lidtlv o/el'en oreler (m = cl'en). Using eqns (29-35) we find

W:(r) = - 2trm Re [It/a",] +2tr Re [A",};", . ~d.

Turning to the contributions of the crack segment C we observe first that

W:(C) = O.

(34)

(35)

(36)

(37)

Indeed the singular field of cjJ:.,. p;" has no tractions on the crack faces. Its displacements
are the same on opposite crack points (a consequence of m = even). Since the tractions of
field I are of the induced type their total work through the displacements of the singular
field vanishes. We may now write

(38)

Combining all partial results. we obtain from (27)

Next we Ict i' -+ 0 anu arrive at the relution

(40)

Finally we express the W*-terms on the right by the work integrals involved and arrive at
the final form of the intcgration formula

(41 )

Here XI. Y. represent the tractions of field I ; u~. v~ are displacements of the fundamental
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field and u;;', t·;;' are those of the complementary regular field. We note that once uL. rL are
known, the displacements u;;,. r;;' can be detennined from

1I~ = u,~ -If:'. r;" = l'~ - r~

where u'"" l-:" are the displacements of the singular field given in (22).
Generally. we need two fundamental fields of even order m to determine the complex

coefficient a",. To find Re am' we can choose a fundamental field corresponding to A", = I
while we can take A", = i for detennining 1m a",. For m = 2, the restriction (25) implies
that the coefficient 1m az cannot be detennined by the integration fonnula and is left
arbitrary. Fortunately. 1m az is only related to rigid body rotation and we can set it to zero
for definiteness. The h", follow from (21 b).

3.2.4. Fundamental fielci,' of odd order (m = odd). In this case, the analogue of (36) is

W:(r) = 2rrm Re [.:t,a",] + H with (42a)

4
fI = 2: },In'''I;; sin [(n-m)rr/2] Re [Am};n_ wz]. (42b)

n =cvcn n-,,,
Setting m = 2k + I and" = 2/, we may also write

'(-y)" , .
/I = 2: 4);' 1 -"k'-I Re [A:., ,/, I)'

,- I ~I ~

For m > I (k > 0), /I is generally unhounded in the neighhorhood of y = O. We therefore
cannot expect W:(r) to reach a limit as y -- O. But let us assume that

./; = 0 for I < (m - 1);2 = k.

In this ease we lind II = O(J(.). Hence

w,*(r) -- 2rrnl Re [A",a",] as y .... 0

and ulso

W*(r) .... 2rrm Re [A,An] as y .... O.

Becuuse of (43) the integral W*(C) exists und we have

lim W*(C') = W*(C).
j' -. ()

All of these permit to stute us analogue of (41)

(43)

(44a)

(44b)

(45)

(46)

For m = I this formula was first given by Bucckner (1970. 1973). In this special case the
restriction (43) is void. The complex coefficient a, is related to the stress intcnsity factors
K, and KII by

As before the coefficient am can be dctcrmined with the aid of two fundamental fields,
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characterized by Am = I and Am = i. If the restriction (43) does not apply one can modify
the field functions cP I' P I into

<$1 = cPl. PI = PI -pC;)

where pC;) is the polynomial

" I
pC;) = L k-=h-I:! where 2n+ I ~ m.

4-1

(47)

(48)

The regular field of ~I' PI abides by (43). and formula (46) becomes applicable with respect
to the regular field ~ I. PI'

If there exists a small neighborhood. - 6 ~ X ~ 0 on the crack faces near the crack tip
which is free of tractions. the restriction (43) on or the modification (47) to the field cP \. PI
can be disregarded and the integration formula (46) is valid for any odd m. In addition.
the integration formula (41) for even m can be simplified since all h vanish. Furthermore.
as has already been explained. the work done by the tractions of field I through the
displacements of cP;". p;". m = even. on the cruck segment C is zero. and we can superpose
the displacements It;". l':" onto II;". l';;' in (41). Thus. when a traction-free neighborhood on
the crack faces ncar the crack tip is present. the integration formulas (41) and (46) can be
combined .IS

(49)

4. PROBLEMS OF TilE TIIIRD KIND

When the plane body is subjected to a combination ofcontinuously prescribed tractions
and imposed displacements on the boundary. the integmtion formulas developed in the
previous sections will have to be modified somewhat. In addition. new fundamental fields
have to be introduced in order to determine the coefficients of series expansions which are
related to rigid body translations.

4.1. Interior points
let the body R with boundary DR of Fig. I be loaded by prescribed tractions on DRr

and under imposed displacements on DR•• where iJRru DR. = DR. Because of the geometric
boundary conditions on iJR•• we have to admit au =F O. bu =F 0 in the expansions of cP. p
about; = 0 given in (10). The singular field cP:". P:" of (II) is still essential but it will give
rise to non-zero tractions on DR.r and displacements on DR•. These surface tractions and
displacements will be relieved by a complementary regular field. cP;;' and p;;'. in order to
construct (12). It is clear that cP:.. p;;' exist for all values of m ~ I. because of the geometric
boundary conditions on iJR•. Hence the restriction (13) for the case of m = I can be
dropped. The fundamental field obtained by such a construction has no body forces and it
induces zero tractions and displacements on oRr and oR•• respectively. Equations (14). (16)
and (17) will still hold but (15) now becomes

formula (17) docs not change if the summation is extended to n = O. and the integration
formula (19) is modified to



370 T.-l. Slt..~

(51 )

where X~. Y~ are the tractions of the fundamental field of order m. So much for the
coefficients a",. b", of subscript m ~ l.

Turning now to the case of au. bl) we observe that the rigid body translation at the
origin is given by

(52)

This shows that the coefficients "0. bo are partially redundant. Thus we can only expect to
determine the preceding combination but not the individual coefficient. In order to develop
an integration formula for "'1(0) we consider the following singular field:

2Jl 2Jl -
t/>~ = -I-Ao log:. p;} = - -1-/\..1 0 log:; log: = log r+iO. (53)

+/\ +/\

This singular field yields single-valued displacements

Furthermore

r -# n. (54)

(55)

The singular field 4>~. I';} gives non-lero tr~lctions and displacements on oRr and oRu •

respectively. We sh.tll relieve them by a complementary regular field 4>~. p~ and construct
a fundamental field of order zero as

(56)

As before. this fundamental field has no body forces and it induces zero tractions and
displacements on oRr and cJRu• respectively.

We now apply the reciprocity theorem to the regular field of 4> I. p} and the fundamental
field of the pair cP&. P&. As before W*(r) and the limit procedure y -+ 0 are of central
importance. In analogy to (16) we find

(57)

where C' = y ei~ and , .. = ye - i~. Since d4> I. dp I arc independent ofao. bo the integral in (57)
will not contribute to a formula for ",}(O); a crude estimate of the integr<l1 is

f' [p~ d4>\ +4>~ dpd = O(Yllog yl>.t

As for the G.-term in (57) we can observe that [see also (55»)

t One can show th~lt the right hand side can be replaced by 0(;,).

(58)
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so that

(60)

Combining this with (14) and (50) we obtain the integration formula

The real and imaginary parts of 11',(0) can be obtained by choosing Au to be I and i.
respectively.

4.2. Crack tips
As in Section 4.1 we assume tractions on iJRrand displacement conditions on c7R.: the

laller shall not involve the crack faces. We also ussume (2Ia), (2Ib). The geometric con
ditions on the regul:lr field eb I' PI require the inclusion of 11 = 0 in the locul ellpansions of
the two analytic functions in (2Iu). Rut unlike the other complell coefficients in (21 b), CIllo

hll arc unrelated. For m~ I we shull still employ the singular field cp;", P;" given in (22) for
the cracked hody but the complementary regular field cp~", P',., of (23) is chosen such th'lt
the fund'lment'll field (p,~, P~ constructed in (24) shows zero tractions on oRr and zero
displacements on iJR•. Further, the complementary regular field will ellist for ttl = 2 cvcn
without the restriction (25) because of the prescncc of geomctric boundary conditions on
DR•.

Following the basic proccdure that led us to thc integration formula (41) for thc
complcx coctlicient am, with even ttl, wc obtain thc modification

_r [X~1I1+Y~VddsJ+Re[A"'~h"'-2)/2J; meven. (62)j.'R. ttl

For odd m, the integration formula (46) changes into

Furthcr, whcn there is somc neighborhood of thc crack tip in which thc crack faccs
arc frce of tractions, the presence of prescribed boundary displacements changes formula
(49) to

(64)

In (62-64), X! and Y~ are the tractions of the fundamental field </J!. p!.
As to the determination of w.(O). we consider the following singular field:

SAS 1~/""C
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y

I

Fig. 3. A dosed crack extending from: '" -I ttl: '" 0 in a finite body R,

4J.~ = JtA o log:. ,,;, = -/tAu log:. (65)

Such a field yields

(66)

which is const..nt on 0 = ± TC and by (2.1) the tractions of (M.. 1/;, v'lOish on the crack faces.
The singulur field <P~. p;, is augmented in the usual Illunner by a complementary regul.lr
field (p~" P~I to arrive at a fundamental field <P~. IJI. which has no body forces and gives zero
tr'lctions on C. M~r'lOd zero displacements on DR".

Following the procedure est'lblished in previous sections. we upply the reciprocity
theorem to the two fields (P I. IJ I .lnd <Pt.'. Ph in the sub-domain of R bounded by the contour
which consists of u circle r. of cruck segments C' and of DR,. and iJR". We lind

(6741)

(67b)

Here the order relution (58) applies to the integral-term. As before the boundary term is as
in (59) with O(y) replaced by O(jY). Altogether. in the limit y .... 0 the reciprocity thcorem
leads to an imcgration formula for the rigid body translution of the regular field at == 0 :

where Re [WI(O)} can be determined by choosing Au = I and 1m [Wl(O)} by setting Au = i.

5. FUNDAMENTAL FIELDS FOR A CLOSED CRACK

The crack configuration which we have considered thus far is the open crack. It is clear
that we cannot usc the singular field of an open crack in a closed crack geometry because
it would cause undue crack openings on some portions of the crack plane. However.
guided by the procedure that we have developed for the open crack. we c..n construct the
fundamental field for a closed crack in the following manner.

Take a finite body R which contains a crack. extending from x = - / to x = 0, Fig. 3.
The singular field <P:". P:" given in (22) for m = even, m ':f: 0, is still valid for this closed
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crack geometry since (22) yields continuous displacements in R outside the closed crack.
But this is not so for odd m. We therefore shall construct an appropriate singular field of
odd order for the closed crack geometry depicted in Fig. 3 as follows.

First. we define a polynomial of degree n in :, qn(:), as

I n (_~)[:Jkqn(:) == - I k· 7 ; n = 1.2,3•...Ji k-O

and let

Fo(:) == J(:+/):. Fo > 0 for real: > O.

Then the function Fn(:) defined by

(69a)

(69b)

(70)

has branch points at: = 0 and: = -/ and is holomorphic in the :-plane outside the crack.
In order to investigate the behavior of Fn(:) near: = O. we first note that (69a) can be
rewritten as

(71 )

Thcn wc havc

(72)

and since

we can rewrite (72) as

(73)

with certain coetlicients yZ - I. Using (73) we can represent the function Fn(z) near z = 0 in
the form

Ncar: = - / the same function admits an expansion of the form

'"
Fn (:) = J:+/ L fJZ(:+l)k.

k-O

(74)

(75)

Now with the help of Fn(:) given in (70). we construct the following singular field of
order m = 2n - I for the closed crack geometry:
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This field is regular outside any neighborhood of ;: = O. Within such a neighborhood it
differs from (22) by a regular field. It can be shown that the field of (76) has no tractions
on the crack faces. On any closed loop around the crack the tractions are self-equilibrated
while the stresses vanish at infinity. Boundary tractions on (~Rr and displacements on (~Ru

can be compensated to zero by a regular field ¢i'",. p'",. We therefore complement the singular
field (76) by this regular field to construct. similar to (2~). a fundamental field ¢i,~. p~. As
in the previous considerations. this fundamental field has no body forces and it shows zero
tractions and displacements on eRr and cRu. respectively. With some minor modifications.
the procedure given in the previous sections for applying the reciprocity theorem can be
repeated for the closed crack geometry. We find that the complex: coefficients am (m = odd)
of the ex:pansion of the elastic field about;: = 0 can also be determined by the same formulas
(46) [with appropriate restrictions (43). (47) and (48)] and (63).

To determine the rigid body translation at : = 0 in the case of problems of the third
kind. we can employ the following singular field:

where

2jl/l" [ 1\ - I ] 2jl/l 11 [ 1\ - I J
1/>;'=I+".log:+ 2 h(:). P;'=I+I\ -l\log:+ 2 h(:)

h(-) = - 2log [!-~/.I +(I/;:)] =2log [ ..~2';:L(I7:.:)~J
- 2 1+ J;:/(T+;) .

(77a)

(77b)

Here the square-roots are to be taken as the main branch. i.e. with values in the right-hand
half-plane. This implies that the arguments under the log-function in (77b) are also in that
half-plane. The main branch of log is to be used. The function h(;:) so defined is holomorphic
outside the crack. ;: = 00 included. On the crack it has the important property

Re [h(x)] = 2 log 2-log 1+log Ixl. (78)

It follows from (55) and (78) that the singular field of (77a) has no tractions on the crack
faces. The field is the response to the point force Q = -41tJLA u• attacking the end point
: = 0 of the crack. At the other end point;: = -I the fic:ld behaves like a regular one.

With the aid of the singular fidd (77a. b) and its complementary regular field. we can
construct an appropriate fundamental field for the closed crack geometry. Once ag~lin we
can repeat. with some minor changes. the procedure of the reciprocity theorem and obtain
the same integration formula .IS given in (68) for determining the rigid body translation ~It

: = 0 in this closed crack geometry.

6. UNBOUNDED DOMAIN AND OTHER GENERALIZATIONS

SO far the integration formulas for the coefficients am. hm have been established for
finite bodies. With suitable conditions on the surface tractions and geometric boundary
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FiS.... A semi-infinite: crack. Crack face tractions of the induced type are applied in the interval
(- T.O). In (- L.O). these applied tractions arc represented by the power series of (:!O). C denotes

the upper and lower crack faces and C is the crack sesments within ( - T.O).

375

data the formulas can be extended to certain infinite bodies as well. We shall show this for
the whole :-plane cracked along the negative real axis. Fig. 4.

6.1. 5;('''';-;''li'';/(' crack ;" ;"li";/(' c/mtW;"
Let the crack be loaded by tractions of the induced type; no other load (including at

: = 'XJ) is admitted. Going back to (2a) we can describe the load with the aid of
p.(x) = ¢ ,(x) +p;(~~). For a bounded and Holder-continuous p.(x) Bueckner (1970) has
given the responding regular field in the form

Let now P1(/) == 0 for I < - T < 0 and let also (- T. 0) contain the interval ( - L. 0) along
whieh the tractions are prescribed in the form (20). From (79) it then follows that the
quantities II',. 2, obey the asymptotic relations

(80)

We now consider the regular field within the disk 1=1 ~ R (> n. Its circular boundary is
r u; the crack portion within (- T.O) is denoted by C'. We shall apply the coemcient
formulas of Section 3 to this finite configuration in a modified form. To this end we observe
that the formulas stay valid ifwc: use ¢'", == O. p'", == 0 in (24) while replacing W*(DR) in the
form (15) by the extended and original form (7a).

For even", (= 2,,) we obtain

(81a)

with

(81 b)

From (22) and (80) it follows that Ko - 0 as R - 00. which in turn leads to
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for all Am (m #- 2) and all Re [A~ for m = 2. Disregarding the ambiguity of rigid body
rotation we may write

I
am =- J,,- I for all m = 2n ~ 2.

m

For odd m (=2n+ 1) we shall use (47). (48). Here we observe that

The analogue of (46) is

with

Now (22) and (83) yield Ko - 0 as R - (7), Therefore

~ Ii'" ~Re [A",a",1 = -., [,\ ,U:" + I 11,;~,1 ds.
~lWI ('

(82)

(83)

(84a)

(84h)

(85)

Altogether we can now st'lte that the functions (22) represent a fundamental field of order
m for the =-plane with a crack along the negative real axis.

The integrand in (85) docs not necessarily vanish for points .~ < - T of the crack; due
to (22), (83) it has order O(lxl' liZ) as x -+ - co. Since we deul with a load of the induced
type the faces C\ and C ~ contribute equally Lo (85) lind one may write

We have to observe

11·1

Xl+if\ == XI+iYI+ip' with p'(x) = r. k-te·
k-ll

Along the segment [ - L. 0] of [ - T,O] we have in purtieular

·L

XI+iYI =0 -i r. hxk
•

k-n

and for (- 00, - T] we find

"-I
XI +if\ = ip'(x) = i r. k~.

k-O

Since P:" vanishes along the crack the displacement w:" takes the simple form

(86)

(87)

(88a)

(88b)
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w:.. = A",:-""~ on C. (89)

As a particular consequence (88b) and (89) we have

L-: [.¥\u:..+ 5\l-:"J dx = - Re [A'" L-: Ixl-I~X-"p'(x) dxJ

= Re [Am "tl
(- I)k-. _ Ik 1 r-o+ nJ. (90)

k=O k-n+ ~

In a similar vein the integral over ( - L. 0) in (86) can be evaluated. One obtains

Since (86) holds for any Am the coefficient a", is found by using Am = I and A", = i. We
write here the final form for Clm in the case T = L:

As before the ~oellicients hm follow from (21 h). Thus

I. .
b", = ./. I lor even m = 2"

",

h", = ,im for odd m.

(92)

(93a)

(93b)

6.2. Applicaliuns
Let the load be a constant pressure a, conlined to the interval (-L,O) of the crack.

This means J~ = - a, it = 0 for k ~ I in (20). Formulas (82), (92). (93a, b) yield

a~ = h2 = U~ = - ~a; "2" = h2" = 0 for n > I, (94a)

With the aid of (79) one can determine tP I. P I in closed form. Using

P\(t)==O for/<-L; PI(t)=-a(L+t) for-L~/~O, (95)

one finds

J= fO a(L + I) dl a fO dl a fO dltPl = PI = -,- --.-- = -J=(L+:) + -J= -.
_7t . L Jill (r -:) 27t - L JIri(r -:) 27t - L JIri

Furthermore

J= fO dl I 1 JL+iJ=
4J.(:) == ,.. = - ;; + -. log •

_7t - L JIiI(/- =) - 27t1 JL - iJ=
so that

(96)

(97)
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(98)

The function cP*(=) admits the expansion

I I " (_I)k(-IL)k
cP*(=) = - ~ + - (=!L) I = L ., -, for 1=1 < L.

_ 7t k~O _k+1
(99)

One can use (98) and (99) to confirm (94a, b).
From (97) and (98) one can derive the response to a point force pressure Q at x = - L.

Elementary steps yield the new field functions

iJ [ I ]cPl=P,=Q2L (L+=)cP*+~.jL; = QcP*· ( 100)

Although the formulas for the coefficients a"" b", have been derived with a view to regular
fields with continuous distribution of prescribed boundary data, the formulas of the previous
sections have more general validity. In particular (86) is applicable to the case on hand with
.\'1 = XI' YI = YI and yields immediately

- Q ]Re [Ama",1 = -----/';"
Ttl" • __ /.

= Rc [A",] Q (-I)"L'" Ij~ m = 2,,+ I.
7tm

(10 I)

This agrees with (99), (100). The coefficients of even order, a~, a~, ... , and b2, b~, ... vanish.

6.3. BOt~I' jiJret's
If the regular clastic field, which we wish to analyze, is also caused by body forces then

there are no analytic functions cP(::), p(::) to describe the field, and it makes little sense to
look for expansions (10) or (2141) as the case may be. There is a significant exception. If a
neighborhood of the origin:: = 0 is free from body forces, then cP, p exist in that neigh
borhood. The expansions (10) or (2141), the latter under condition (20), exist as before. All
of the fundamental fields of this paper can be used in applications of the reciprocity theorem,
and formulas for the coctlicients am, b", can be derived. They differ from (19), (41), (46)
etc., in only one respect: wherever the work integral

appears, it has to be augmented by the analogous work of the body forces through the
displacements of the fundamental field. The same applies to the modification (47).

If the body forces are everywhere, but of a simple nature, e.g. gravity, centrifugal
forces, it is recommended to split the regular field F into two fields F = F,+ F2 where F,
responds to the body forces regardless of boundary conditions in as simple a way as possible.
Frequently F, can be found in closed and elementary form, for example Bueckner and
Giaever (1966). To the analysis of F2 all the formulas of this paper can be applied.

7. CONCLUDING REMARKS

In this paper, we have generalized Bueckner's fundamental field concept and developed
a theory of higher order weight functions for computing expansion coefficients for both
interior points and crack tips in linear elastic solids. For the expansion coefficients at crack
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tips. we have considered the fundamental fields for both open and closed crack geometries.
By following the procedure of Bueckner (1970). our results could be extended to analytic
cracks as well.

In general. closed form expressions of the fundamental fields and higher order weight
functions are limited to simple geometries and numerical procedures are required to compute
these higher order weight functions, A variational principle developd by Sham (1987) for
determining singular fields in elastic bodies of finite size can be used to this purpose. A
finite element implementation ofthe variational principle has been carried out for computing
fundamental fields of first order (for calculating stress intensity factors) in two dimensions
(Sham, 1987). and in three dimensions (Sham and Zhou, 1989). and an implementation
has also been performed for computing fundamental fields for interface notch tip in anti·
plane strain (Sham 1988a). In this procedure. only a single finite element analysis of the
given geometry with fixed boundary (traction versus displacement) partition is required to
generate the fundamental field. The same variational principle can also be used to obtain
a finite element procedure for computing the higher order weight functions. It is reported
in a separate work (Sham. 1988b).

Ackn"wletfqemt'nt-ft is ;1 great pleasure to acknowledge the guidance and ;Idvice of Dr, 1-1. F. Bucekner
throughout the course of this work.
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